Skip to main content

NaRCiSuS

Structural genomics is the wide term which describes process of determination of structure representation of information in human genome and at present is limited almost exclusively on proteins. Although in common understanding genetic information means “genes and their encoded protein products”, thousands of human genes produce transcripts which are important in biological point of view but they do not necessarily produce proteins. Furthermore, even though the sequence of the human DNA is known by now, the meaning of the most of the sequences still remains unknown. It is very likely that a large amount of genes has been highly underestimated, mainly because the actual gene finders only work well for large, highly expressed, evolutionary conserved protein-coding genes. Most of those genome elements encode for RNA from which transfer and ribosomal RNAs are the classical examples. But beside these well-known molecules there is a vast unknown world of tiny RNAs that might play a crucial role in a number of cellular processes. Those elements are named Noncoding RNAs (ncRNA) and they perform their function without transcription to the protein product.
Here is proposed development of integrated bioinformatics platform that is specifically addressed for detecting, verifying, and classifying of noncoding RNAs. This complex approach to "Computational RNomics" will provide the pipeline which will be capable of detecting RNA motifs with low sequence conservation. It will also integrate RNA motif prediction which should significantly improve the quality of the RNA homolog search.

PEOPLE-RG-2009-249211

Comments

Popular posts from this blog

Continous integration with PHP and Jenkins

Overview Continuous integration (CI) is a development practice which allows testing, building and checking the quality of the application in automated way without manual developer intervention. It requires developers to integrate code into a shared repository several times a day or every commit/merge to the given branch of the repository. Each check-in is then verified by an automated build, allowing teams to detect problems early. While PHP Continuous Integration (PHPCI) does not require the the code compilation as build” one can understand the set of task like testing and quality checks which are performed in timely manner or when the certain conditions are met. PHPCI can be performed on Jenkins Server. The detailed description of jenkins server configuration in is presented here. PHPCI requires PHing package which can be provided into application by Composer.

GPGPU Accelerated Sparse Linear Solver for Fast Simulation of On-Chip Coupled Problems

Continued device scaling into the nanometer region has given rise to new effects that previously had negligible impact but now present greater challenges to designing successful mixed-signal silicon. Design efforts are further exacebated by unprecedented computational resource requirements for accurate design simulation and verification. This paper presents a GPGPU accelerated sparse linear solver for fast simulation of on-chip coupled problems using nVIDIA and ATI GPGPU accelerators on a multi-core computational cluster and evaluate parallelization strategies from a computational perspective.