Skip to main content

GOLEM - Grid On computationaL Electro-Magnetics

The goal of this project is to produce a Beowulf claster of modular computational infrastructute especially designed for Computational Electromagnetics (CEM) . Initially in GOLEM we would like simply a cluster skeleton which could be applied to any preexisting computational code with a minimum effort. Making sure that the code is as portable as possible will hopefully increase the usefulness of the package. Beowulf Cluster widely-used term meaning independent computers combined into a unified system through software and networking based on commodity hardware, on a private system network. One of the main goals of GOLEM project is Design of the advanced PC cluster of Beowulf type and its integration with local and European Grid Network for solving of large system of linear equations by direct (sparse matrices solvers) and iterative methods. The infrastructure will support industry and also other research projects.
Post a Comment

Popular posts from this blog


Structural genomics is the wide term which describes process of determination of structure representation of information in human genome and at present is limited almost exclusively on proteins. Although in common understanding genetic information means “genes and their encoded protein products”, thousands of human genes produce transcripts which are important in biological point of view but they do not necessarily produce proteins. Furthermore, even though the sequence of the human DNA is known by now, the meaning of the most of the sequences still remains unknown. It is very likely that a large amount of genes has been highly underestimated, mainly because the actual gene finders only work well for large, highly expressed, evolutionary conserved protein-coding genes. Most of those genome elements encode for RNA from which transfer and ribosomal RNAs are the classical examples. But beside these well-known molecules there is a vast unknown world of tiny RNAs that might play a crucial …

Application and implementation of probabilistic profile-profile comparison methods for protein fold recognition

Fold recognition is a method of fold detecting and protein tertiary structure prediction applied for proteins lacking homologues sequences of known fold and structure deposited in the Protein Data Bank. They are based on assumption that there is strictly limited number of different protein folds in nature, mostly as a result of evolution and due to basic physical and chemical constraints of polypeptide chains. Fold recognition methods are useful for protein structure prediction, evolutionary analysis, metabolic pathways and enzymatic efficiency prediction, molecular docking and drug design. Currently there are about 1300 discovered and characterized protein folds in SCOP and CATH databases. Every newly discovered protein sequence has significant chances to be classified into one of those folds. Many different approaches have been proposed for finding the correct fold for a new sequence and it is often useful to include evolutionary information for query as well as for target proteins.…

GPGPU Accelerated Sparse Linear Solver for Fast Simulation of On-Chip Coupled Problems

Continued device scaling into the nanometer region has given rise to new effects that previously had negligible impact but now present greater challenges to designing successful mixed-signal silicon. Design efforts are further exacebated by unprecedented computational resource requirements for accurate design simulation and verification. This paper presents a GPGPU accelerated sparse linear solver for fast simulation of on-chip coupled problems using nVIDIA and ATI GPGPU accelerators on a multi-core computational cluster and evaluate parallelization strategies from a computational perspective.