Skip to main content

The application of graph theory and high performance computing medical diagnostics and nanotechnology

The commercial application is the integrated system for detection of new regulatory elements located in the non coding genome parts. Until now many human disorders have been found to be connected to some of the noncoding RNA’s. Detection of new noncoding elements and correlation with SNP (Single Nucleotide Polymorphysm) databases may allow help to detect and explain cause of other types of cancer and diseases.
Computational prediction of ncRNAs in genomic sequences would also allow experimental testing of expression levels, functional assay by deletion or mutagenesis, structural analysis and identification of protein or nucleic acid interaction partners.
Another application is so called RNA nanotechnology. It is designing of nanoparticles, which are assembled mainly from ribonucleic acid which possess both the right size and ability to gain entry into cells and halt viral growth or cancer's progress or deliver drugs. Some of those nanoparticles has been successfully tested in mice and lab-grown human cells


Popular posts from this blog

International Supercomputing Conference, Hamburg, Germany 23th June 2009

The International Supercomputing Conference is the Europe’s premier HPC event. The attendance allows observing trends science and technology of High Performance Computing for whole next year. 2009 edition achieved record numbers of attendees and exhibitors, a level of success even more impressive given the international economic crisis. With its move to Hamburg, ISC’09 reached a significantly higher level of attendance, bringing 1,670 HPC industry leaders. Research labs demonstrated their scientific applications of supercomputing in most recent fields such us GPGPU accelerators, clouds and green computing. Furthermore, this, ISC’09 also welcomed several first-time exhibitors. The exhibition brought countless highlights such as the demo of both the IS5000 40 Gb/s infniband switches and low-latency 10 Gigabit Ethernet. The attendance on ISC’09 allows to anticipate future development of ATLAS system and to present current achievements’ of ToK4nEDA team.


Structural genomics is the wide term which describes process of determination of structure representation of information in human genome and at present is limited almost exclusively on proteins. Although in common understanding genetic information means “genes and their encoded protein products”, thousands of human genes produce transcripts which are important in biological point of view but they do not necessarily produce proteins. Furthermore, even though the sequence of the human DNA is known by now, the meaning of the most of the sequences still remains unknown. It is very likely that a large amount of genes has been highly underestimated, mainly because the actual gene finders only work well for large, highly expressed, evolutionary conserved protein-coding genes. Most of those genome elements encode for RNA from which transfer and ribosomal RNAs are the classical examples. But beside these well-known molecules there is a vast unknown world of tiny RNAs that might play a crucial …

ELM: the status of the 2010 eukaryotic linear motif resource

Linear motifs are short segments of multidomain proteins that provide regulatory functions independently of protein tertiary structure. Much of intracellular signalling passes through protein modifications at linear motifs. Many thousands of linear motif instances, most notably phosphorylation sites, have now been reported. Although clearly very abundant, linear motifs are difficult to predict de novo in protein sequences due to the difficulty of obtaining robust statistical assessments. The ELM resource at provides an expanding knowledge base, currently covering 146 known motifs, with annotation that includes >1300 experimentally reported instances. ELM is also an exploratory tool for suggesting new candidates of known linear motifs in proteins of interest. Information about protein domains, protein structure and native disorder, cellular and taxonomic contexts is used to reduce or deprecate false positive matches. Results are graphically displayed in a 'Bar…